Adaptive Gradients and the SAGE RCN

Elisabeth Hamin Infield emhamin@umass.edu

Sustainable
Adaptive
Gradients in the
Coastal Environment

UMassAmherst

The Commonwealth's Flagship Campus

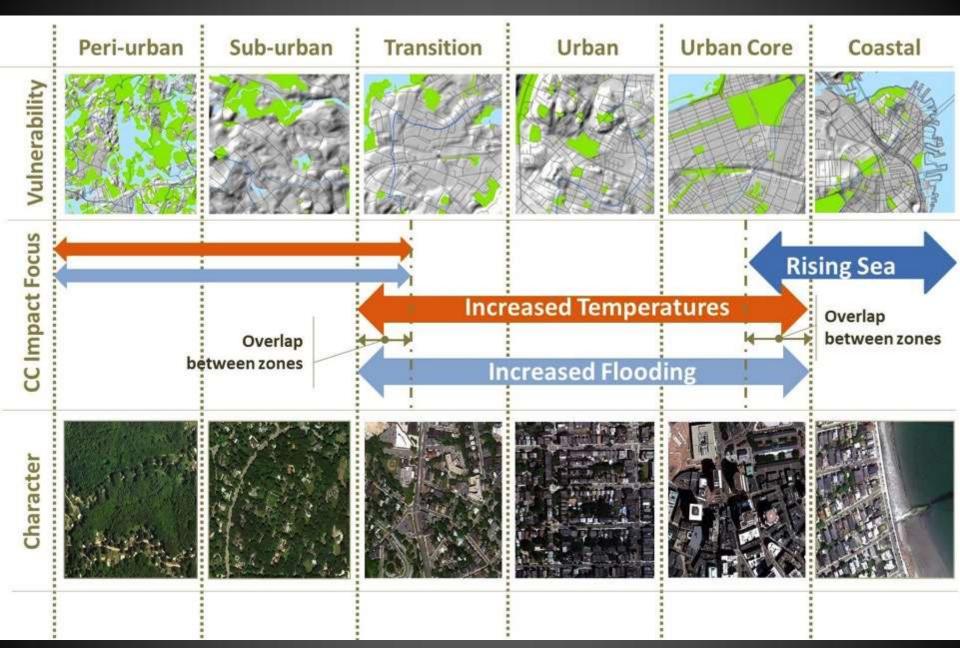
SAGE RCN:

Sustainable Adaptive Gradients in the coastal Environment

Research Collaboration Network

Funded by: NSF Research Collaboration Network (RCN): SEES. Award Number: ICER-1338767. Project period: 1/2014-9/2019.

Elisabeth Hamin, PI; Melissa Kenney, Don DeGroot, Tom Sheahan, co-PIs


Co-Learning Project

Civil Engineers
Coastal Ecologists
Land Use Planners
Policymakers
Decision Scientists
Landscape Architects
Climate Scientists

Meta: Build interdisciplinary and inter-geographic research group

Practice: Overcome barriers to widespread adoption of greener, more just infrastructure

Early meetings findings

- Greener infrastructure provides many cobenefits
- Co-benefits are not well captured in current project evaluation tools
- Developed and refined Adaptive Gradients
 Framework: Project assessment tool
 capturing wide range of possible benefits

Developing the Gradients: 2014 - 2017

Phase 1 Network survey 1: Relevant factors & barriers		
Objective	Identify the universe of factors that influence infrastructure decisions	
Action	 Categorize responses, eliminate duplicates, unify terminology (surveys = 28); completed May 2015. Result is 38 factors that influence infrastructur project decisions. 	
Validation	Workshop Discussion: Generating the categories group discussion of survey 1 results.	
Results	Assure that categories represent participant views (participants = 31); completed June 2015.	

Phase 2	Network survey 2: Ranking the factors		
Objective	Identify the most important factors that influence infrastructure decisions; use this to develop initial gradients		
Action	Retain items selected by at least 50% of experts and categorize; completed August 2015. Results in 5 factors / gradients.		
Validation	Workshop Discussion: Testing the categories group discussion of survey 2 results with input from policymakers in network.		
Results	Results • Gradients expanded to 7 for clarity, preliminary defintions developed each category.		

Phase 3	Gradients applied to case studies		
Objective • Test and refine gradient framework			
Action	Prepare case study protocol based on gradients defined in phase 2		
Validation	 Case study tests: 4 project cases prepared using case study protocol; In person writing workshop tests preliminary gradients by evaluating case studies. 		
Results • Refine gradients definitions and add Greenhouse Gas Reduction (completed February 2018).			

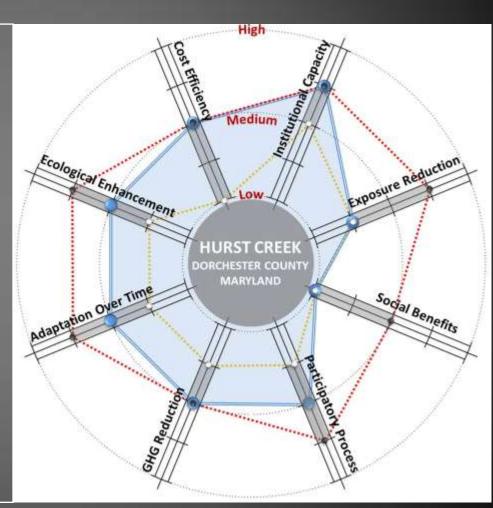
· Final test: BVI case study with hosts.

Applying the Gradients: 2017-2018

- Site: ENLACE neighborhood in Puerto Rico
- Site: Shoreline project in Maryland
- Four other desk eval cases

Eight Gradients for Project Evaluation

- Exposure Reduction
 - Cost Efficiency
- Institutional Capacity
- Ecological Enhancement
 - Adaptation Over Time
- Greenhouse Gas Reduction
 - Participatory Process
 - Social Benefits


How do you use the gradients to evaluate a project?

- 1. Form an evaluation team
- 2. Collect relevant information
- 3. Develop a scoring rubric (if needed)
- 4. Score and rescore the project until consensus
- 5. One to two page summary of findings

Example: Hurst Creek, MD

<u>Gradient</u>	Final Gradient Score
Exposure Reduction	Medium-Low
Cost Efficiency	Medium
Institutional Capacity	Medium-High
Ecological Enhancement	Medium
Adaptation Over Time	Medium
Greenhouse Gas Reduction	Medium
Participatory Process	Medium
Social Benefits	Low

Take-Aways

- There is power in a simple but sufficient evaluation tool
- Framework isn't just coastal
- Public and non-profit sector entities can adopt the Gradients freely
- Private/consulting groups -- please see us
- Development is on-going and collaborations are welcome!

Please cite as: Hamin, E.M., Y. Abunnasr, M.R. Dilthey, et al. (2018). "Pathways to coastal resiliency: The Adaptive Gradients Framework." Sustainability, 10(8), 2629

- Practitioners' Guide
- Technical Guide
- Research Article
- Website with case studies and reference materials: www.resilientinfrastructure.org